• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • About REMIND
  • Research
  • Publications
  • People
  • News
  • Opportunities
  • Contact Us

Reconfigurable Electronic Materials Inspired by Nonlinear Neuron Dynamics

Texas A&M University College of Engineering

Publications

Simultaneous Solid Electrolyte Deposition and Cathode Lithiation for Thin Film Batteries and Lithium Iontronic Devices

Zoey Warecki, Victoria Castagna Ferrari, Donald A Robinson, Joshua D Sugar, Jonathan Lee, Anton V Ievlev, Nam Soo Kim, David Murdock Stewart, Sang Bok Lee, Paul Albertus, Gary Rubloff, A Alec Talin

Simultaneous Solid Electrolyte Deposition and Cathode Lithiation for Thin Film Batteries and Lithium Iontronic Devices

4/9/2024

ACS Energy Lett. 2024, 9, 5, 2065–2074

We show that the deposition of the solid-state electrolyte LiPON onto films of V2O5 leads to their uniform lithiation of up to 2.2 Li per V2O5, without affecting the Li concentration in the LiPON and its ionic conductivity. Our results indicate that Li incorporation occurs during LiPON deposition, in contrast to earlier mechanisms proposed to explain postdeposition Li transfer between LiPON and LiCoO2. We use our discovery to demonstrate symmetric thin film batteries with a capacity of >270 mAh/g, at a rate of 20C, and 1600 cycles with only 8.4% loss in capacity. We also show how autolithiation can simplify fabrication of Li iontronic transistors attractive for emerging neuromorphic computing applications. Our discovery that LiPON deposition results in autolithiation of the underlying insertion oxide has the potential to substantially simplify and enhance the fabrication process for thin film solid state Li ion batteries and emerging lithium iontronic neuromorphic computing devices.

Site specific redox properties in ligand differentiated di-nickel complexes inspired by the acetyl CoA synthase active site

Manuel Quiroz, Manish Jana, Kaiyang Liu, Nattamai Bhuvanesh, Michael B Hall, Marcetta Y Darensbourg

Site specific redox properties in ligand differentiated di-nickel complexes inspired by the acetyl CoA synthase active site

4/5/2024

Dalton Trans., 2024, 53, 7414-7423

Bimetallic transition metal complexes with site-specific redox properties offer a versatile platform for understanding electron polarization, intramolecular electron transfer processes, and customizing electronic and magnetic properties that might impact reactivity and catalyst design. Inspired by the dissymmetric nickel sites in the Acetyl CoA Synthase (ACS) Active Site, three new bimetallic Ni(N2S2)–Ni(S2C2R2) complexes based on Ni(N2S2) metalloligand donor synthons, Nid, in mimicry of the nickel site distal to the redox-active iron sulfur cluster of ACS, and nickel dithiolene receiver units, designated as Nip, the nickel proximal to the 4Fe4S cluster, were combined to explore the influence of ligand environment on electronic structure and redox properties of each unit. The combination of synthons gave a matrix of three S-bridged dinickel complexes, characterized by X-ray crystallography, and appropriate spectroscopies. Computational modeling is connected to the electronic characteristics of the nickel donor and receiver units. This study demonstrated the intricacies of identifying sites of electrochemical redox processes, within multi-metallic systems containing non-innocent ligands.

Complete and Efficient Graph Transformers for Crystal Material Property Prediction

Keqiang Yan, Cong Fu, Xiaofeng Qian, Xiaoning Qian, Shuiwang Ji

Complete and Efficient Graph Transformers for Crystal Material Property Prediction

3/18/2024

arXiv preprint arXiv:2403.11857

Crystal structures are characterized by atomic bases within a primitive unit cell that repeats along a regular lattice throughout 3D space. The periodic and infinite nature of crystals poses unique challenges for geometric graph representation learning. Specifically, constructing graphs that effectively capture the complete geometric information of crystals and handle chiral crystals remains an unsolved and challenging problem. In this paper, we introduce a novel approach that utilizes the periodic patterns of unit cells to establish the lattice-based representation for each atom, enabling efficient and expressive graph representations of crystals. Furthermore, we propose ComFormer, a SE(3) transformer designed specifically for crystalline materials. ComFormer includes two variants; namely, iComFormer that employs invariant geometric descriptors of Euclidean distances and angles, and eComFormer that utilizes equivariant vector representations. Experimental results demonstrate the state-of-the-art predictive accuracy of ComFormer variants on various tasks across three widely-used crystal benchmarks. Our code is publicly available as part of the AIRS library (https://github.com/divelab/AIRS).

Domain-dependent strain and stacking in two-dimensional van der Waals ferroelectrics

Chuqiao Shi, Nannan Mao, Kena Zhang, Tianyi Zhang, Ming-Hui Chiu, Kenna Ashen, Bo Wang, Xiuyu Tang, Galio Guo, Shiming Lei, Longqing Chen, Ye Cao, Xiaofeng Qian, Jing Kong, Yimo Han

Domain-dependent strain and stacking in two-dimensional van der Waals ferroelectrics

2023-11

Chuqiao Shi, Nannan Mao, Kena Zhang, Tianyi Zhang, Ming-Hui Chiu, Kenna Ashen, Bo Wang, Xiuyu Tang, Galio Guo, Shiming Lei, Longqing Chen, Ye Cao, Xiaofeng Qian, Jing Kong, Yimo Han. Domain-dependent strain and stacking in two-dimensional van der Waals ferroelectrics, Nature Communications, 14, 7168 (2023) [DOI: 10.1038/s41467-023-42947-3]

Van der Waals (vdW) ferroelectrics have attracted significant attention for their potential in next-generation nano-electronics. Two-dimensional (2D) group-IV monochalcogenides have emerged as a promising candidate due to their strong room temperature in-plane polarization down to a monolayer limit. However, their polarization is strongly coupled with the lattice strain and stacking orders, which impact their electronic properties. Here, we utilize four-dimensional scanning transmission electron microscopy (4D-STEM) to simultaneously probe the in-plane strain and out-of-plane stacking in vdW SnSe. Specifically, we observe large lattice strain up to 4% with a gradient across ~50 nm to compensate lattice mismatch at domain walls, mitigating defects initiation. Additionally, we discover the unusual ferroelectric-to-antiferroelectric domain walls stabilized by vdW force and may lead to anisotropic nonlinear optical responses. Our findings provide a comprehensive understanding of in-plane and out-of-plane structures affecting domain properties in vdW SnSe, laying the foundation for domain wall engineering in vdW ferroelectrics.

Sulfur Lone Pairs Control Topology in Heterotrimetallic Complexes: An Experimental and Theoretical Study

Paulina Guerrero-Almaraz, Manuel Quiroz, David Rodriguez, Manish Jana, Michael Hall, Marcetta Darensbourg

Sulfur Lone Pairs Control Topology in Heterotrimetallic Complexes: An Experimental and Theoretical Study

2023-09

Paulina Guerrero-Almaraz, Manuel Quiroz, David Rodriguez, Manish Jana, Michael Hall, Marcetta Darensbourg. Sulfur Lone Pairs Control Topology in Heterotrimetallic Complexes: An Experimental and Theoretical Study, ACS Organic & Inorganic Au, 3, 393–402 (2023) [DOI:10.1021/acsorginorgau.3c00025]

Heterotrimetallic complexes with (N2S2)M metallodithiolates, M = Ni2+, [Fe(NO)]2+, and [Co(NO)]2+, as bidentate chelating ligands to a central trans-Cr(NO)(MeCN) unit were characterized as the first members of a new class, NiCrNi, FeCrFe, CoCrCo. The complexes exhibit a cisoid structural topology, ascribed to the stereoactivity of the available lone pair(s) on the sulfur donors, resulting in a dispersed, electropositive pocket from the N/N and N/S hydrocarbon linkers wherein the Cr-NO site is housed. Computational studies explored alternative isomers (transoid and inverted cisoid) that suggest a combination of electronic and steric effects govern the geometrical selectivity. Electrostatic potential maps readily display the dominant electronegative potential from the sulfurs which force the NO to the electropositive pocket. The available S lone pairs work in synergy with the π-withdrawing ability of NO to lift Cr out of the S4 plane toward the NO and stabilize the geometry. The metallodithiolate ligands bound to Cr(NO) thus find structural consistency across the three congeners. Although the dinitrosyl [(bme-dach)Co(NO)-Mo(NO)(MeCN)-(bme-dach)Co(MeCN)][PF6]2 (CoMoCo′) analogue displays chemical noninnocence and a partial Mo–Co bond toward (N2S2)Co′(NCCH3) in an “asymmetric butterfly” topology [Guerrero-Almaraz, P. Inorg. Chem. 2021, 60(2121), 15975–15979], the stability of the {Cr(NO)}5 unit prohibits such bond rearrangement. Magnetism and EPR studies illustrate spin coupling across the sulfur thiolate sulfur bridges.

Crystallographic variant mapping using precession electron diffraction data

Marcus Hansen, Ainiu Wang, Jiaqi Dong, Yuwei Zhang, Tejas Umale, Sarbajit Banerjee, Patrick Shamberger, Matt Pharr, Ibrahim Karaman, Kelvin Xie

Crystallographic variant mapping using precession electron diffraction data

2023-06

In this work, we developed three methods to map crystallographic variants of samples at the nanoscale by analyzing precession electron diffraction data using a high-temperature shape memory alloy and a VO2 thin film on sapphire as the model systems. The three methods are (I) a user-selecting-reference pattern approach, (II) an algorithm-selecting-reference-pattern approach, and (III) a k-means approach. In the first two approaches, Euclidean distance, Cosine, and Structural Similarity (SSIM) algorithms were assessed for the diffraction pattern similarity quantification. We demonstrated that the Euclidean distance and SSIM methods outperform the Cosine algorithm. We further revealed that the random noise in the diffraction data can dramatically affect similarity quantification. Denoising processes could improve the crystallographic mapping quality. With the three methods mentioned above, we were able to map the crystallographic variants in different materials systems, thus enabling fast variant number quantification and clear variant distribution visualization. The advantages and disadvantages of each approach are also discussed. We expect these methods to benefit researchers who work on martensitic materials, in which the variant information is critical to understand their properties and functionalities.

A reference-area-free strain mapping method using precession electron diffraction data

Dexin Zhao, Aniket Patel, Aaron Barbosa, Marcus Hansen, Ainiu Wang, Jiaqi Dong, Yuwei Zhang, Tejas Umale, Ibrahim Karaman, Patrick Shamberger, Sarbajit Banerjee, Matt Pharr, Kelvin Xie

A reference-area-free strain mapping method using precession electron diffraction data

2023-01

A reference-area-free strain mapping method using precession electron diffraction data, Ultramicroscopy, 247, 113700 (2023) [DOI:10.1016/j.ultramic.2023.113700]

In this work, we developed a method using precession electron diffraction data to map the residual elastic strain at the nano-scale. The diffraction pattern of each pixel was first collected and denoised. Template matching was then applied using the center spot as the mask to identify the positions of the diffraction disks. Statistics of distances between the selected diffracted disks enable the user to make an informed decision on the reference and to generate strain maps. Strain mapping on an unstrained single crystal sapphire shows the standard deviation of strain measurement is 0.5%. With this method, we were able to successfully measure and map the residual elastic strain in VO2 on sapphire and martensite in a Ni50.3Ti29.7Hf20 shape memory alloy. This approach does not require the user to select a “strain-free area” as a reference and can work on datasets even with the crystals oriented away from zone axes. This method is expected to provide a robust and more accessible alternative means of studying the residual strain of various material systems that complements the existing algorithms for strain mapping.

Toggling Stereochemical Activity through Interstitial Positioning of Cations between 2D V2O5 Double Layers

George Agbeworvi, Wasif Zaheer, Joseph Handy, Justin Andrews, Saul Perez-Beltran, Cherno Jaye, Conan Weiland, Daniel Fischer, Perla Balbuena, Sarbajit Banerjee

Toggling Stereochemical Activity through Interstitial Positioning of Cations between 2D V2O5 Double Layers

2023-08

George Agbeworvi, Wasif Zaheer, Joseph Handy, Justin Andrews, Saul Perez-Beltran, Cherno Jaye, Conan Weiland, Daniel Fischer, Perla Balbuena, Sarbajit Banerjee. Toggling Stereochemical Activity through Interstitial Positioning of Cations between 2D V2O5 Double Layers, Chemistry of Materials, 35, 7175–7188 (2023) [DOI:10.1021/acs.chemmater.3c01463]

The 5/6s2 lone-pair electrons of p-block cations in their lower oxidation states are a versatile electronic and geometric structure motif that can underpin lattice anharmonicity and often engender electronic and structural instabilities that underpin the function of active elements in nonlinear optics, thermochromics, thermoelectrics, neuromorphic computing, and photocatalysis. In contrast to periodic solids where lone-pair-bearing cations are part of the structural framework, installing lone-pair-bearing cations in the interstitial sites of intercalation hosts provides a means of a systematically modulating electronic structure through the choice of the group and the period of the inserted cation while preserving the overall framework connectivity. The extent of stereochemical activity and the energy positioning of lone-pair-derived mid-gap states depend on the cation identity, stoichiometry, and strength of anion hybridization. V2O5 polymorphs are versatile insertion hosts that can accommodate a broad range of s-, p-, and d-block cations. However, the insertion of lone-pair-bearing cations remains largely underexplored. In this article, we examine the implications of varying the 6s2 cations situated in interlayer sites between condensed [V4O10]n double layers. Systematic modulations of lattice distortions, electronic structure, and magnetic ordering are observed with increasing strength of stereochemical activity from group 12 to group 14 cations. We compare and contrast p-block-layered MxV2O5 (M = Hg, Tl, and Pb) compounds and map the significance of local off-centering arising from the stereochemical activity of lone-pair cations to the emergence of filled antibonding lone-pair 6s2–O 2p-hybridized mid-gap states mediated by second-order Jahn–Teller distortions. Crystallographic studies of cation coordination environments and the resulting modulation of V–V interactions have been used in conjunction with variable-energy hard X-ray photoelectron spectroscopy measurements, first-principles electronic structure calculations, and crystal orbital Hamilton population analyses to decipher the origins of stereochemical activity. Magnetic susceptibility measurements reveal antiferromagnetic signatures for all the three compounds. However, the differences in V–V interactions significantly affect the energy balance of the superexchange interactions, resulting in an ordering temperature of 160 and 260 K for Hg0.5V2O5 and δ-Tl0.5V2O5, respectively, as compared to 7 K for δ-Pb0.5V2O5. In δ-Pb0.5V2O5, the strong stereochemical activity of electron lone pairs and the resulting electrostatic repulsions enforce superlattice ordering, which strongly modifies the electronic localization patterns along the [V4O10] slabs, resulting in disrupted magnetic ordering and an anomalously low ordering temperature. The results demonstrate a versatile strategy for toggling the stereochemical activity of electron lone pairs to modify the electronic structure near the Fermi level and to mediate superexchange interactions.

Magnetic coupling between Fe(NO) spin probe ligands through diamagnetic NiII, PdII and PtII tetrathiolate bridges

Manuel Quiroz, Molly Lockart, Shan Xue, Dakota Jones, Yisong Guo, Brad Pierce, Kim Dunbar, Michael Hall, Marcetta Darensbourg

Magnetic coupling between Fe(NO) spin probe ligands through diamagnetic NiII, PdII and PtII tetrathiolate bridges

2023-08

Manuel Quiroz, Molly Lockart, Shan Xue, Dakota Jones, Yisong Guo, Brad Pierce, Kim Dunbar, Michael Hall, Marcetta Darensbourg. Magnetic coupling between Fe(NO) spin probe ligands through diamagnetic NiII, PdII and PtII tetrathiolate bridges, Chemical Science, 14, 9167–9174 (2023) [DOI:10.1039/d3sc01546g]

Reaction of the nitrosylated-iron metallodithiolate ligand, paramagnetic (NO)Fe(N2S2), with [M(CH3CN)n][BF4]2 salts (M = NiII, PdII, and PtII; n = 4 or 6) affords di-radical tri-metallic complexes in a stairstep type arrangement ([FeMFe]2+, M = Ni, Pd, and Pt), with the central group 10 metal held in a MS4 square plane. These isostructural compounds have nearly identical ν(NO) stretching values, isomer shifts, and electrochemical properties, but vary in their magnetic properties. Despite the intramolecular Fe⋯Fe distances of ca. 6 Å, antiferromagnetic coupling is observed between {Fe(NO)}7 units as established by magnetic susceptibility, EPR, and DFT studies. The superexchange interaction through the thiolate sulfur and central metal atoms is on the order of NiII < PdII ≪ PtII with exchange coupling constants (J) of −3, −23, and −124 cm−1, consistent with increased covalency of the M–S bonds (3d < 4d < 5d). This trend is reproduced by DFT calculations with molecular orbital analysis providing insight into the origin of the enhancement in the exchange interaction. Specifically, the magnitude of the exchange interaction correlates surprisingly well with the energy difference between the HOMO and HOMO−1 orbitals of the triplet states, which is reflected in the central metal’s contribution to these orbitals. These results demonstrate the ability of sulfur-dense metallodithiolate ligands to engender strong magnetic communication by virtue of their enhanced covalency and polarizability.

Spontaneous Symmetry‐Breaking of Nonequilibrium Steady–States Caused by Nonlinear Electrical Transport

Adelaide Bradicich, Timothy Brown, Sabyasachi Ganguli, Stanley Williams, Patrick Shamberger.

Spontaneous Symmetry‐Breaking of Nonequilibrium Steady–States Caused by Nonlinear Electrical Transport

2023-06

Adelaide Bradicich, Timothy Brown, Sabyasachi Ganguli, Stanley Williams, Patrick Shamberger. Spontaneous Symmetry‐Breaking of Nonequilibrium Steady–States Caused by Nonlinear Electrical Transport, Advanced Electronic Materials, 9, 2300265 (2023) [DOI:10.1002/aelm.202300265] [Reconfigurable Electronic Materials Inspired by Nonlinear Neuron Dynamics (reMIND)]

Negative differential resistance (NDR) in certain materials has been attributed to spontaneous emergence of symmetry-breaking electrical current density localization from a previously homogeneous distribution, which is postulated to occur due to the nonequilibrium thermodynamic force of minimization of entropy production. However, this phenomenon has not been quantitatively predicted based on intrinsic material properties and an applied electrical stimulus. Herein an instability criterion is derived for localization of current density and temperature from a thermal fluctuation in a parallel conductor model of a thin film that is subject to Newton’s law of cooling. The conditions for steady–state electro-thermal localization is predicted, verifying a decrease in entropy production upon localization. Electro-thermal localization accompanied by a decrease of entropy production is confirmed in a multiphysics simulation of current flow in a thin film. The instability criterion predicts conditions for spontaneous current density localization, relating symmetry breaking fundamentally to dynamical instability via Local Activity theory.

  • 1
  • Go to page 2
  • Go to Next Page »

Google Scholar link

View all publications on our Google Scholar profile.

Recent Publications

  • Simultaneous Solid Electrolyte Deposition and Cathode Lithiation for Thin Film Batteries and Lithium Iontronic Devices
  • Site specific redox properties in ligand differentiated di-nickel complexes inspired by the acetyl CoA synthase active site
  • Complete and Efficient Graph Transformers for Crystal Material Property Prediction
  • Domain-dependent strain and stacking in two-dimensional van der Waals ferroelectrics
  • Sulfur Lone Pairs Control Topology in Heterotrimetallic Complexes: An Experimental and Theoretical Study

© 2016–2025 Reconfigurable Electronic Materials Inspired by Nonlinear Neuron Dynamics Log in

Texas A&M Engineering Experiment Station Logo
  • College of Engineering
  • twitter
  • State of Texas
  • Open Records
  • Risk, Fraud & Misconduct Hotline
  • Statewide Search
  • Site Links & Policies
  • Accommodations
  • Environmental Health, Safety & Security
  • Employment