• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • About REMIND
  • Research
  • Publications
  • People
  • News
  • Opportunities
  • Contact Us

Reconfigurable Electronic Materials Inspired by Nonlinear Neuron Dynamics

Texas A&M University College of Engineering

Publications

Memristors with Tunable Volatility for Reconfigurable Neuromorphic Computing

Kyung Seok Woo, Hyungjun Park, Nestor Ghenzi, A Alec Talin, Taeyoung Jeong, Jung-Hae Choi, Sangheon Oh, Yoon Ho Jang, Janguk Han, R Stanley Williams, Suhas Kumar, Cheol Seong Hwang

Memristors with Tunable Volatility for Reconfigurable Neuromorphic Computing

June 19, 2024

Neuromorphic computing promises an energy-efficient alternative to traditional digital processors in handling data-heavy tasks, primarily driven by the development of both volatile (neuronal) and nonvolatile (synaptic) resistive switches or memristors. However, despite their energy efficiency, memristor-based technologies presently lack functional tunability, thus limiting their competitiveness with arbitrarily programmable (general purpose) digital computers. This work introduces a two-terminal bilayer memristor, which can be tuned among neuronal, synaptic, and hybrid behaviors. The varying behaviors are accessed via facile control over the filament formed within the memristor, enabled by the interplay between the two active ionic species (oxygen vacancies and metal cations). This solution is unlike single-species ion migration employed in most other memristors, which makes their behavior difficult to control. By reconfiguring a single crossbar array of hybrid memristors, two different applications that usually require distinct types of devices are demonstrated – reprogrammable heterogeneous reservoir computing and arbitrary non-Euclidean graph networks. Thus, this work outlines a potential path toward functionally reconfigurable postdigital computers.

Tunable stochastic memristors for energy-efficient encryption and computing

Kyung Seok Woo, Janguk Han, Su-in Yi, Luke Thomas, Hyungjun Park, Suhas Kumar, Cheol Seong Hwang

Tunable stochastic memristors for energy-efficient encryption and computing

April 15, 2024

Information security and computing, two critical technological challenges for post-digital computation, pose opposing requirements – security (encryption) requires a source of unpredictability, while computing generally requires predictability. Each of these contrasting requirements presently necessitates distinct conventional Si-based hardware units with power-hungry overheads. This work demonstrates Cu0.3Te0.7/HfO2 (‘CuTeHO’) ion-migration-driven memristors that satisfy the contrasting requirements. Under specific operating biases, CuTeHO memristors generate truly random and physically unclonable functions, while under other biases, they perform universal Boolean logic. Using these computing primitives, this work experimentally demonstrates a single system that performs cryptographic key generation, universal Boolean logic operations, and encryption/decryption. Circuit-based calculations reveal the energy and latency advantages of the CuTeHO memristors in these operations. This work illustrates the functional flexibility of memristors in implementing operations with varying component-level requirements.

Mott neurons with dual thermal dynamics for spatiotemporal computing

Gwangmin Kim, Jae Hyun In, Younghyun Lee, Hakseung Rhee, Woojoon Park, Hanchan Song, Juseong Park, Jae Bum Jeon, Timothy D Brown, A Alec Talin, Suhas Kumar, Kyung Min Kim

Mott neurons with dual thermal dynamics for spatiotemporal computing

June 18, 2024

Heat dissipation is a natural consequence of operating any electronic system. In nearly all computing systems, such heat is usually minimized by design and cooling. Here, we show that the temporal dynamics of internally produced heat in electronic devices can be engineered to both encode information within a single device and process information across multiple devices. In our demonstration, electronic NbOx Mott neurons, integrated on a flexible organic substrate, exhibit 18 biomimetic neuronal behaviours and frequency-based nociception within a single component by exploiting both the thermal dynamics of the Mott transition and the dynamical thermal interactions with the organic substrate. Further, multiple interconnected Mott neurons spatiotemporally communicate purely via heat, which we use for graph optimization by consuming over 106 times less energy when compared with the best digital processors. Thus, exploiting natural thermal processes in computing can lead to functionally dense, energy-efficient and radically novel mixed-physics computing primitives.

True random number generation using the spin crossover in LaCoO3

Kyung Seok Woo, Alan Zhang, Allison Arabelo, Timothy D Brown, Minseong Park, A Alec Talin, Elliot J Fuller, Ravindra Singh Bisht, Xiaofeng Qian, Raymundo Arroyave, Shriram Ramanathan, Luke Thomas, R Stanley Williams, Suhas Kumar

True random number generation using the spin crossover in LaCoO3

May 31, 2024

While digital computers rely on software-generated pseudo-random number generators, hardware-based true random number generators (TRNGs), which employ the natural physics of the underlying hardware, provide true stochasticity, and power and area efficiency. Research into TRNGs has extensively relied on the unpredictability in phase transitions, but such phase transitions are difficult to control given their often abrupt and narrow parameter ranges (e.g., occurring in a small temperature window). Here we demonstrate a TRNG based on self-oscillations in LaCoO3 that is electrically biased within its spin crossover regime. The LaCoO3 TRNG passes all standard tests of true stochasticity and uses only half the number of components compared to prior TRNGs. Assisted by phase field modeling, we show how spin crossovers are fundamentally better in producing true stochasticity compared to traditional phase transitions. As a validation, by probabilistically solving the NP-hard max-cut problem in a memristor crossbar array using our TRNG as a source of the required stochasticity, we demonstrate solution quality exceeding that using software-generated randomness.

Axon-like active signal transmission

Timothy D Brown, Alan Zhang, Frederick U Nitta, Elliot D Grant, Jenny L Chong, Jacklyn Zhu, Sritharini Radhakrishnan, Mahnaz Islam, Elliot J Fuller, A Alec Talin, Patrick J Shamberger, Eric Pop, R Stanley Williams, Suhas Kumar

Axon-like Active Signal Transmission

September 11, 2024

Any electrical signal propagating in a metallic conductor loses amplitude due to the natural resistance of the metal. Compensating for such losses presently requires repeatedly breaking the conductor and interposing amplifiers that consume and regenerate the signal. This century-old primitive severely constrains the design and performance of modern interconnect-dense chips1. Here we present a fundamentally different primitive based on semi-stable edge of chaos (EOC)2,3, a long-theorized but experimentally elusive regime that underlies active (self-amplifying) transmission in biological axons4,5. By electrically accessing the spin crossover in LaCoO3, we isolate semi-stable EOC, characterized by small-signal negative resistance and amplification of perturbations6,7. In a metallic line atop a medium biased at EOC, a signal input at one end exits the other end amplified, without passing through a separate amplifying component. While superficially resembling superconductivity, active transmission offers controllably amplified time-varying small-signal propagation at normal temperature and pressure, but requires an electrically energized EOC medium. Operando thermal mapping reveals the mechanism of amplification—bias energy of the EOC medium, instead of fully dissipating as heat, is partly used to amplify signals in the metallic line, thereby enabling spatially continuous active transmission, which could transform the design and performance of complex electronic chips.

Thermodynamic origin of nonvolatility in resistive memory

Jingxian Li, Anirudh Appachar, Sabrina L Peczonczyk, Elisa T Harrison, Anton V Ievlev, Ryan Hood, Dongjae Shin, Sangmin Yoo, Brianna Roest, Kai Sun, Karsten Beckmann, Olya Popova, Tony Chiang, William S Wahby, Robin B Jacobs-Godrim, Matthew J Marinella, Petro Maksymovych, John T Heron, Nathaniel Cady, Wei D Lu, Suhas Kumar, A Alec Talin, Wenhao Sun, Yiyang Li

Thermodynamic origin of nonvolatility in resistive memory

November 6, 2024

Resistive memory, or a memristor, is a promising technology for future computing applications. One critical property of resistive memory is nonvolatile information retention. Previously, information retention was believed to arise from the slow diffusion of oxygen in the resistive switching material that kinetically “freezes” the information state. In this study, Li et al. show that information retention is not only a result of slow oxygen diffusion but also a thermodynamic property of composition phase separation, whereby there can be several states that are identical in energy. This result not only provides a more accurate physical picture of resistive memory but also highlights phase separation as a new mechanism to enable future information storage devices.

Potential and challenges of computing with molecular materials

R. Stanley Williams, Sreebrata Goswami, Sreetosh Goswami

Potential and challenges of computing with molecular materials

March 29, 2024

We are at an inflection point in computing where traditional technologies are incapable of keeping up with the demands of exploding data collection and artificial intelligence. This challenge demands a leap to a new platform as transformative as the digital silicon revolution. Over the past 30 years molecular materials for computing have generated great excitement but continually fallen short of performance and reliability requirements. However, recent reports indicate that those historical limitations may have been resolved. Here we assess the current state of computing with molecular-based materials, especially using transition metal complexes of redox active ligands, in the context of neuromorphic computing. We describe two complementary research paths necessary to determine whether molecular materials can be the basis of a new computing technology: continued exploration of the molecular electronic properties that enable computation and, equally important, the process development for on-chip integration of molecular materials.

Picosecond carrier dynamics in InAs and GaAs revealed by ultrafast electron microscopy

Christopher Perez, Scott R Ellis, Francis M Alcorn, Eric J Smoll, Elliot J Fuller, Francois Leonard, David Chandler, A Alec Talin, Ravindra Singh Bisht, Shriram Ramanathan, Kenneth E Goodson, Suhas Kumar

Picosecond carrier dynamics in InAs and GaAs revealed by ultrafast electron microscopy

May 15, 2024

Understanding the limits of spatiotemporal carrier dynamics, especially in III-V semiconductors, is key to designing ultrafast and ultrasmall optoelectronic components. However, identifying such limits and the properties controlling them has been elusive. Here, using scanning ultrafast electron microscopy, in bulk n-GaAs and p-InAs, we simultaneously measure picosecond carrier dynamics along with three related quantities: subsurface band bending, above-surface vacuum potentials, and surface trap densities. We make two unexpected observations. First, we uncover a negative-time contrast in secondary electrons resulting from an interplay among these quantities. Second, despite dopant concentrations and surface state densities differing by many orders of magnitude between the two materials, their carrier dynamics, measured by photoexcited band bending and filling of surface states, occur at a seemingly common timescale of about 100 ps. This observation may indicate fundamental kinetic limits tied to a multitude of material and surface properties of optoelectronic III-V semiconductors and highlights the need for techniques that simultaneously measure electro-optical kinetic properties.

Tutorial on In Situ and Operando (Scanning) Transmission Electron Microscopy for Analysis of Nanoscale Structure–Property Relationships

Michelle A Smeaton, Patricia Abellan, Steven R Spurgeon, Raymond R Unocic, Katherine L Jungjohann

Tutorial on In Situ and Operando (Scanning) Transmission Electron Microscopy for Analysis of Nanoscale Structure–Property Relationships

December 17, 2024

In situ and operando (scanning) transmission electron microscopy [(S)TEM] is a powerful characterization technique that uses imaging, diffraction, and spectroscopy to gain nano-to-atomic scale insights into the structure–property relationships in materials. This technique is both customizable and complex because many factors impact the ability to collect structural, compositional, and bonding information from a sample during environmental exposure or under application of an external stimulus. In the past two decades, in situ and operando (S)TEM methods have diversified and grown to encompass additional capabilities, higher degrees of precision, dynamic tracking abilities, enhanced reproducibility, and improved analytical tools. Much of this growth has been shared through the community and within commercialized products that enable rapid adoption and training in this approach. This tutorial aims to serve as a guide for students, collaborators, and nonspecialists to learn the important factors that impact the success of in situ and operando (S)TEM experiments and assess the value of the results obtained. As this is not a step-by-step guide, readers are encouraged to seek out the many comprehensive resources available for gaining a deeper understanding of in situ and operando (S)TEM methods, property measurements, data acquisition, reproducibility, and data analytics.

Development of (NO)Fe(N2S2) as a Metallodithiolate Spin Probe Ligand: A Case Study Approach

Manuel Quiroz, Marcetta Y Darensbourg

Development of (NO)Fe(N2S2) as a Metallodithiolate Spin Probe Ligand: A Case Study Approach

February 28, 2024

The ubiquity of sulfur–metal connections in nature inspires the design of bi- and multimetallic systems in synthetic inorganic chemistry. Common motifs for biocatalysts developed in evolutionary biology include the placement of metals in close proximity with flexible sulfur bridges as well as the presence of π-acidic/delocalizing ligands. This Account will delve into the development of a (NO)Fe(N2S2) metallodithiolate ligand that harnesses these principles. The Fe(NO) unit is the centroid of a N2S2 donor field, which as a whole is capable of serving as a redox-active, bidentate S-donor ligand. Its paramagnetism as well as the ν(NO) vibrational monitor can be exploited in the development of new classes of heterobimetallic complexes. We offer four examples in which the unpaired electron on the {Fe(NO)}7 unit is spin-paired with adjacent paramagnets in proximal and distal positions.

First, the exceptional stability of the (NO)Fe(N2S2)-Fe(NO)2 platform, which permits its isolation and structural characterization at three distinct redox levels, is linked to the charge delocalization occurring on both the Fe(NO) and the Fe(NO)2 supports. This accommodates the formation of a rare nonheme {Fe(NO)}8 triplet state, with a linear configuration. A subsequent FeNi complex, featuring redox-active ligands on both metals (NO on iron and dithiolene on nickel), displayed unexpected physical properties. Our research showed good reversibility in two redox processes, allowing isolation in reduced and oxidized forms. Various spectroscopic and crystallographic analyses confirmed these states, and Mössbauer data supported the redox change at the iron site upon reduction. Oxidation of the complex produced a dimeric dication, revealing an intriguing magnetic behavior. The monomer appears as a spin-coupled diradical between {Fe(NO)}7 and the nickel dithiolene monoradical, while dimerization couples the latter radical units via a Ni2S2 rhomb. Magnetic data (SQUID) on the dimer dication found a singlet ground state with a thermally accessible triplet state that is responsible for magnetism. A theoretical model built on an H4 chain explains this unexpected ferromagnetic low-energy triplet state arising from the antiferromagnetic coupling of a four-radical molecular conglomerate. For comparison, two (NO)Fe(N2S2) were connected through diamagnetic group 10 cations producing diradical trimetallic complexes. Antiferromagnetic coupling is observed between {Fe(NO)}7 units, with exchange coupling constants (J) of −3, −23, and −124 cm–1 for NiII, PdII, and PtII, respectively. This trend is explained by the enhanced covalency and polarizability of sulfur-dense metallodithiolate ligands. A central paramagnetic trans-Cr(NO)(MeCN) receiver unit core results in a cissoid structural topology, influenced by the stereoactivity of the lone pair(s) on the sulfur donors. This {Cr(NO)}5 radical bridge, unlike all previous cases, finds the coupling between the distal Fe(NO) radicals to be ferromagnetic (J = 24 cm–1).

The stability and predictability of this S = 1/2 moiety and the steric/electronic properties of the bridging thiolate sulfurs suggest it to be a likely candidate for the development of novel molecular (magnetic) compounds and possibly materials. The role of synthetic inorganic chemistry in designing synthons that permit connections of the (NO)Fe(N2S2) metalloligand is highlighted as well as the properties of the heterobi- and polymetallic complexes derived therefrom.

  • 1
  • Go to page 2
  • Go to page 3
  • Go to Next Page »

Google Scholar link

View all publications on our Google Scholar profile.

Recent Publications

  • Memristors with Tunable Volatility for Reconfigurable Neuromorphic Computing
  • Tunable stochastic memristors for energy-efficient encryption and computing
  • Mott neurons with dual thermal dynamics for spatiotemporal computing
  • True random number generation using the spin crossover in LaCoO3
  • Axon-like active signal transmission

© 2016–2025 Reconfigurable Electronic Materials Inspired by Nonlinear Neuron Dynamics Log in

Texas A&M Engineering Experiment Station Logo
  • College of Engineering
  • twitter
  • State of Texas
  • Open Records
  • Risk, Fraud & Misconduct Hotline
  • Statewide Search
  • Site Links & Policies
  • Accommodations
  • Environmental Health, Safety & Security
  • Employment