• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • About REMIND
  • Research
  • Publications
  • People
  • News
  • Opportunities
  • Contact Us

Reconfigurable Electronic Materials Inspired by Nonlinear Neuron Dynamics

Texas A&M University College of Engineering

Localized Conduction Channels in Memristors

Kyung Seok Woo, R. Stanley Williams, Suhas Kumar

Localized Conduction Channels in Memristors

December 19, 2024

Since the early 2000s, the impending end of Moore’s scaling, as the physical limits to shrinking transistors have been approached, has fueled interest in improving the functionality and efficiency of integrated circuits by employing memristors or two-terminal resistive switches. Formation (or avoidance) of localized conducting channels in many memristors, often called “filaments”, has been established as the basis for their operation. While we understand some qualitative aspects of the physical and thermodynamic origins of conduction localization, there are not yet quantitative models that allow us to predict when they will form or how large they will be. Here we compile observations and explanations of channel formation that have appeared in the literature since the 1930s, show how many of these seemingly unrelated pieces fit together, and outline what is needed to complete the puzzle. This understanding will be a necessary predictive component for the design and fabrication of post-Moore’s-era electronics.

Google Scholar link

View all publications on our Google Scholar profile.

Recent Publications

  • Tuning the Spin Transition and Carrier Type in Rare-Earth Cobaltates via Compositional Complexity
  • Revealing Complete Atomic-Scale Switching Pathways in van der Waals Ferroelectrics
  • Graphlet Decomposition Using Random-Walk Memristors
  • Origin of Stabilization of Ligand-Centered Mixed Valence Ruthenium Azopyridine Complexes: DFT Insights for Neuromorphic Applications
  • Mechanisms enabling reconfigurability and long-term retention in vanadium oxide electrochemical memory

© 2016–2026 Reconfigurable Electronic Materials Inspired by Nonlinear Neuron Dynamics Log in

Texas A&M Engineering Experiment Station Logo
  • College of Engineering
  • twitter
  • State of Texas
  • Open Records
  • Risk, Fraud & Misconduct Hotline
  • Statewide Search
  • Site Links & Policies
  • Accommodations
  • Environmental Health, Safety & Security
  • Employment