• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • About REMIND
  • Research
  • Publications
  • People
  • News
  • Opportunities
  • Contact Us

Reconfigurable Electronic Materials Inspired by Nonlinear Neuron Dynamics

Texas A&M University College of Engineering

Mott neurons with dual thermal dynamics for spatiotemporal computing

Gwangmin Kim, Jae Hyun In, Younghyun Lee, Hakseung Rhee, Woojoon Park, Hanchan Song, Juseong Park, Jae Bum Jeon, Timothy D Brown, A Alec Talin, Suhas Kumar, Kyung Min Kim

Mott neurons with dual thermal dynamics for spatiotemporal computing

June 18, 2024

Heat dissipation is a natural consequence of operating any electronic system. In nearly all computing systems, such heat is usually minimized by design and cooling. Here, we show that the temporal dynamics of internally produced heat in electronic devices can be engineered to both encode information within a single device and process information across multiple devices. In our demonstration, electronic NbOx Mott neurons, integrated on a flexible organic substrate, exhibit 18 biomimetic neuronal behaviours and frequency-based nociception within a single component by exploiting both the thermal dynamics of the Mott transition and the dynamical thermal interactions with the organic substrate. Further, multiple interconnected Mott neurons spatiotemporally communicate purely via heat, which we use for graph optimization by consuming over 106 times less energy when compared with the best digital processors. Thus, exploiting natural thermal processes in computing can lead to functionally dense, energy-efficient and radically novel mixed-physics computing primitives.

Google Scholar link

View all publications on our Google Scholar profile.

Recent Publications

  • Tuning the Spin Transition and Carrier Type in Rare-Earth Cobaltates via Compositional Complexity
  • Revealing Complete Atomic-Scale Switching Pathways in van der Waals Ferroelectrics
  • Graphlet Decomposition Using Random-Walk Memristors
  • Origin of Stabilization of Ligand-Centered Mixed Valence Ruthenium Azopyridine Complexes: DFT Insights for Neuromorphic Applications
  • Mechanisms enabling reconfigurability and long-term retention in vanadium oxide electrochemical memory

© 2016–2026 Reconfigurable Electronic Materials Inspired by Nonlinear Neuron Dynamics Log in

Texas A&M Engineering Experiment Station Logo
  • College of Engineering
  • twitter
  • State of Texas
  • Open Records
  • Risk, Fraud & Misconduct Hotline
  • Statewide Search
  • Site Links & Policies
  • Accommodations
  • Environmental Health, Safety & Security
  • Employment