• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • About REMIND
  • Research
  • Publications
  • People
  • News
  • Opportunities
  • Contact Us

Reconfigurable Electronic Materials Inspired by Nonlinear Neuron Dynamics

Texas A&M University College of Engineering

Publications

Atomistic Origins of Conductance Switching in an ε-Cu0.9V2O5 Neuromorphic Single Crystal Oscillator

John Ponis; Nicholas Jerla; George Agbeworvi; Saul Perez-Beltran; Nitin Kumar; Kenna Ashen; Jialu Li; Edrick Wang; Michelle A. Smeaton; Fatme Jardali; Sarbajeet Chakraborty; Patrick J. Shamberger; Katherine L. Jungjohann; Conan Weiland; Cherno Jaye; Lu Ma; Daniel Fischer; Jinghua Guo; G. Sambandamurthy; Xiaofeng Qian; Sarbajit Banerjee

Atomistic Origins of Conductance Switching in an ε-Cu0.9V2O5 Neuromorphic Single Crystal Oscillator

12/4/2024

Building artificial neurons and synapses is key to achieving the promise of energy efficiency and acceleration envisioned for brain-inspired information processing. Emulating the spiking behavior of biological neurons in physical materials requires precise programming of conductance nonlinearities. Strong correlated solid-state compounds exhibit pronounced nonlinearities such as metal–insulator transitions arising from dynamic electron–electron and electron–lattice interactions. However, a detailed understanding of atomic rearrangements and their implications for electronic structure remains obscure. In this work, we unveil discontinuous conductance switching from an antiferromagnetic insulator to a paramagnetic metal in ε-Cu0.9V2O5. Distinctively, fashioning nonlinear dynamical oscillators from entire millimeter-sized crystals allows us to map the structural transformations underpinning conductance switching at an atomistic scale using single-crystal X-ray diffraction. We observe superlattice ordering of Cu ions between [V4O10] layers at low temperatures, a direct result of interchain Cu-ion migration and intrachain reorganization. The resulting charge and spin ordering along the vanadium oxide framework stabilizes an insulating state. Using X-ray absorption and emission spectroscopies, assigned with the aid of electronic structure calculations and measurements of partially and completely decuprated samples, we find that Cu 3d and V 3d orbitals are closely overlapped near the Fermi level. The filling and overlap of these states, specifically the narrowing/broadening of V 3dxy states near the Fermi level, mediate conductance switching upon Cu-ion rearrangement. Understanding the mechanisms of conductance nonlinearities in terms of ion motion along specific trajectories can enable the atomistic design of neuromorphic active elements through strategies such as cointercalation and site-selective modification.

Tuning Optical and Electrical Properties of Vanadium Oxide with Topochemical Reduction and Substitutional Tin

Lance M. Wheeler; Thanh Luan Phan; Michelle A. Smeaton; Swagata Acharya; Shruti Hariyani; Marlena E. Alexander; Miranda I. Gonzalez; Elisa M. Miller; David W. Mulder; Sarbajit Banerjee; Katherine L. Jungjohann; Andrew J. Ferguson; Jeffrey L. Blackburn

Tuning Optical and Electrical Properties of Vanadium Oxide with Topochemical Reduction and Substitutional Tin

October 17, 2024

Vanadium oxides are widely tunable materials, with many thermodynamically stable phases suitable for applications spanning catalysis to neuromorphic computing. The stability of vanadium in a range of oxidation states enables mixed-valence polymorphs of kinetically accessible metastable materials. Low-temperature synthetic routes to, and the properties of, these metastable materials are poorly understood and may unlock new optoelectronic and magnetic functionalities for expanded applications. In this work, we demonstrate topochemical reduction of α-V2O5 to produce metastable vanadium oxide phases with tunable oxygen vacancies (>6%) and simultaneous substitutional tin incorporation (>3.5%). The chemistry is carried out at low temperature (65 °C) with solution-phase SnCl2, where Sn2+ is oxidized to Sn4+ as V5+ sites are reduced to V4+ during oxygen vacancy formation. Despite high oxygen vacancy and tin concentrations, the transformations are topochemical in that the symmetry of the parent crystal remains intact, although the unit cell expands. Band structure calculations show that these vacancies contribute electrons to the lattice, whereas substitutional tin contributes holes, yielding a compensation doping effect and control over the electronic properties. The SnCl2 redox chemistry is effective on both solution-processed V2O5 nanoparticle inks and mesoporous films cast from untreated inks, enabling versatile routes toward functional films with tunable optical and electronic properties. The electrical conductance rises concomitantly with the SnCl2 concentration and treatment time, indicating a net increase in density of free electrons in the host lattice. This work provides a valuable demonstration of kinetic tailoring of electronic properties of vanadium–oxygen systems through top-down chemical manipulation from known thermodynamic phases.

Simultaneous Solid Electrolyte Deposition and Cathode Lithiation for Thin Film Batteries and Lithium Iontronic Devices

Zoey Warecki, Victoria Castagna Ferrari, Donald A Robinson, Joshua D Sugar, Jonathan Lee, Anton V Ievlev, Nam Soo Kim, David Murdock Stewart, Sang Bok Lee, Paul Albertus, Gary Rubloff, A Alec Talin

Simultaneous Solid Electrolyte Deposition and Cathode Lithiation for Thin Film Batteries and Lithium Iontronic Devices

April 9, 2024

We show that the deposition of the solid-state electrolyte LiPON onto films of V2O5 leads to their uniform lithiation of up to 2.2 Li per V2O5, without affecting the Li concentration in the LiPON and its ionic conductivity. Our results indicate that Li incorporation occurs during LiPON deposition, in contrast to earlier mechanisms proposed to explain postdeposition Li transfer between LiPON and LiCoO2. We use our discovery to demonstrate symmetric thin film batteries with a capacity of >270 mAh/g, at a rate of 20C, and 1600 cycles with only 8.4% loss in capacity. We also show how autolithiation can simplify fabrication of Li iontronic transistors attractive for emerging neuromorphic computing applications. Our discovery that LiPON deposition results in autolithiation of the underlying insertion oxide has the potential to substantially simplify and enhance the fabrication process for thin film solid state Li ion batteries and emerging lithium iontronic neuromorphic computing devices.

Site specific redox properties in ligand differentiated di-nickel complexes inspired by the acetyl CoA synthase active site

Manuel Quiroz, Manish Jana, Kaiyang Liu, Nattamai Bhuvanesh, Michael B Hall, Marcetta Y Darensbourg

Site specific redox properties in ligand differentiated di-nickel complexes inspired by the acetyl CoA synthase active site

April 5, 2024

Bimetallic transition metal complexes with site-specific redox properties offer a versatile platform for understanding electron polarization, intramolecular electron transfer processes, and customizing electronic and magnetic properties that might impact reactivity and catalyst design. Inspired by the dissymmetric nickel sites in the Acetyl CoA Synthase (ACS) Active Site, three new bimetallic Ni(N2S2)–Ni(S2C2R2) complexes based on Ni(N2S2) metalloligand donor synthons, Nid, in mimicry of the nickel site distal to the redox-active iron sulfur cluster of ACS, and nickel dithiolene receiver units, designated as Nip, the nickel proximal to the 4Fe4S cluster, were combined to explore the influence of ligand environment on electronic structure and redox properties of each unit. The combination of synthons gave a matrix of three S-bridged dinickel complexes, characterized by X-ray crystallography, and appropriate spectroscopies. Computational modeling is connected to the electronic characteristics of the nickel donor and receiver units. This study demonstrated the intricacies of identifying sites of electrochemical redox processes, within multi-metallic systems containing non-innocent ligands.

Complete and Efficient Graph Transformers for Crystal Material Property Prediction

Keqiang Yan, Cong Fu, Xiaofeng Qian, Xiaoning Qian, Shuiwang Ji

Complete and Efficient Graph Transformers for Crystal Material Property Prediction

3/18/2024

Crystal structures are characterized by atomic bases within a primitive unit cell that repeats along a regular lattice throughout 3D space. The periodic and infinite nature of crystals poses unique challenges for geometric graph representation learning. Specifically, constructing graphs that effectively capture the complete geometric information of crystals and handle chiral crystals remains an unsolved and challenging problem. In this paper, we introduce a novel approach that utilizes the periodic patterns of unit cells to establish the lattice-based representation for each atom, enabling efficient and expressive graph representations of crystals. Furthermore, we propose ComFormer, a SE(3) transformer designed specifically for crystalline materials. ComFormer includes two variants; namely, iComFormer that employs invariant geometric descriptors of Euclidean distances and angles, and eComFormer that utilizes equivariant vector representations. Experimental results demonstrate the state-of-the-art predictive accuracy of ComFormer variants on various tasks across three widely-used crystal benchmarks. Our code is publicly available as part of the AIRS library (https://github.com/divelab/AIRS).

Domain-dependent strain and stacking in two-dimensional van der Waals ferroelectrics

Chuqiao Shi, Nannan Mao, Kena Zhang, Tianyi Zhang, Ming-Hui Chiu, Kenna Ashen, Bo Wang, Xiuyu Tang, Galio Guo, Shiming Lei, Longqing Chen, Ye Cao, Xiaofeng Qian, Jing Kong, Yimo Han

Domain-dependent strain and stacking in two-dimensional van der Waals ferroelectrics

November 7, 2023

Van der Waals (vdW) ferroelectrics have attracted significant attention for their potential in next-generation nano-electronics. Two-dimensional (2D) group-IV monochalcogenides have emerged as a promising candidate due to their strong room temperature in-plane polarization down to a monolayer limit. However, their polarization is strongly coupled with the lattice strain and stacking orders, which impact their electronic properties. Here, we utilize four-dimensional scanning transmission electron microscopy (4D-STEM) to simultaneously probe the in-plane strain and out-of-plane stacking in vdW SnSe. Specifically, we observe large lattice strain up to 4% with a gradient across ~50 nm to compensate lattice mismatch at domain walls, mitigating defects initiation. Additionally, we discover the unusual ferroelectric-to-antiferroelectric domain walls stabilized by vdW force and may lead to anisotropic nonlinear optical responses. Our findings provide a comprehensive understanding of in-plane and out-of-plane structures affecting domain properties in vdW SnSe, laying the foundation for domain wall engineering in vdW ferroelectrics.

Sulfur Lone Pairs Control Topology in Heterotrimetallic Complexes: An Experimental and Theoretical Study

Paulina Guerrero-Almaraz, Manuel Quiroz, David Rodriguez, Manish Jana, Michael Hall, Marcetta Darensbourg

Sulfur Lone Pairs Control Topology in Heterotrimetallic Complexes: An Experimental and Theoretical Study

September 14, 2023

Heterotrimetallic complexes with (N2S2)M metallodithiolates, M = Ni2+, [Fe(NO)]2+, and [Co(NO)]2+, as bidentate chelating ligands to a central trans-Cr(NO)(MeCN) unit were characterized as the first members of a new class, NiCrNi, FeCrFe, CoCrCo. The complexes exhibit a cisoid structural topology, ascribed to the stereoactivity of the available lone pair(s) on the sulfur donors, resulting in a dispersed, electropositive pocket from the N/N and N/S hydrocarbon linkers wherein the Cr-NO site is housed. Computational studies explored alternative isomers (transoid and inverted cisoid) that suggest a combination of electronic and steric effects govern the geometrical selectivity. Electrostatic potential maps readily display the dominant electronegative potential from the sulfurs which force the NO to the electropositive pocket. The available S lone pairs work in synergy with the π-withdrawing ability of NO to lift Cr out of the S4 plane toward the NO and stabilize the geometry. The metallodithiolate ligands bound to Cr(NO) thus find structural consistency across the three congeners. Although the dinitrosyl [(bme-dach)Co(NO)-Mo(NO)(MeCN)-(bme-dach)Co(MeCN)][PF6]2 (CoMoCo′) analogue displays chemical noninnocence and a partial Mo–Co bond toward (N2S2)Co′(NCCH3) in an “asymmetric butterfly” topology [Guerrero-Almaraz, P. Inorg. Chem. 2021, 60(2121), 15975–15979], the stability of the {Cr(NO)}5 unit prohibits such bond rearrangement. Magnetism and EPR studies illustrate spin coupling across the sulfur thiolate sulfur bridges.

Crystallographic variant mapping using precession electron diffraction data

Marcus Hansen, Ainiu Wang, Jiaqi Dong, Yuwei Zhang, Tejas Umale, Sarbajit Banerjee, Patrick Shamberger, Matt Pharr, Ibrahim Karaman, Kelvin Xie

Crystallographic variant mapping using precession electron diffraction data

July 4, 2023

In this work, we developed three methods to map crystallographic variants of samples at the nanoscale by analyzing precession electron diffraction data using a high-temperature shape memory alloy and a VO2 thin film on sapphire as the model systems. The three methods are (I) a user-selecting-reference pattern approach, (II) an algorithm-selecting-reference-pattern approach, and (III) a k-means approach. In the first two approaches, Euclidean distance, Cosine, and Structural Similarity (SSIM) algorithms were assessed for the diffraction pattern similarity quantification. We demonstrated that the Euclidean distance and SSIM methods outperform the Cosine algorithm. We further revealed that the random noise in the diffraction data can dramatically affect similarity quantification. Denoising processes could improve the crystallographic mapping quality. With the three methods mentioned above, we were able to map the crystallographic variants in different materials systems, thus enabling fast variant number quantification and clear variant distribution visualization. The advantages and disadvantages of each approach are also discussed. We expect these methods to benefit researchers who work on martensitic materials, in which the variant information is critical to understand their properties and functionalities.

A reference-area-free strain mapping method using precession electron diffraction data

Dexin Zhao, Aniket Patel, Aaron Barbosa, Marcus Hansen, Ainiu Wang, Jiaqi Dong, Yuwei Zhang, Tejas Umale, Ibrahim Karaman, Patrick Shamberger, Sarbajit Banerjee, Matt Pharr, Kelvin Xie

A reference-area-free strain mapping method using precession electron diffraction data

February 10, 2023

In this work, we developed a method using precession electron diffraction data to map the residual elastic strain at the nano-scale. The diffraction pattern of each pixel was first collected and denoised. Template matching was then applied using the center spot as the mask to identify the positions of the diffraction disks. Statistics of distances between the selected diffracted disks enable the user to make an informed decision on the reference and to generate strain maps. Strain mapping on an unstrained single crystal sapphire shows the standard deviation of strain measurement is 0.5%. With this method, we were able to successfully measure and map the residual elastic strain in VO2 on sapphire and martensite in a Ni50.3Ti29.7Hf20 shape memory alloy. This approach does not require the user to select a “strain-free area” as a reference and can work on datasets even with the crystals oriented away from zone axes. This method is expected to provide a robust and more accessible alternative means of studying the residual strain of various material systems that complements the existing algorithms for strain mapping.

Toggling Stereochemical Activity through Interstitial Positioning of Cations between 2D V2O5 Double Layers

George Agbeworvi, Wasif Zaheer, Joseph Handy, Justin Andrews, Saul Perez-Beltran, Cherno Jaye, Conan Weiland, Daniel Fischer, Perla Balbuena, Sarbajit Banerjee

Toggling Stereochemical Activity through Interstitial Positioning of Cations between 2D V2O5 Double Layers

August 31, 2023

The 5/6s2 lone-pair electrons of p-block cations in their lower oxidation states are a versatile electronic and geometric structure motif that can underpin lattice anharmonicity and often engender electronic and structural instabilities that underpin the function of active elements in nonlinear optics, thermochromics, thermoelectrics, neuromorphic computing, and photocatalysis. In contrast to periodic solids where lone-pair-bearing cations are part of the structural framework, installing lone-pair-bearing cations in the interstitial sites of intercalation hosts provides a means of a systematically modulating electronic structure through the choice of the group and the period of the inserted cation while preserving the overall framework connectivity. The extent of stereochemical activity and the energy positioning of lone-pair-derived mid-gap states depend on the cation identity, stoichiometry, and strength of anion hybridization. V2O5 polymorphs are versatile insertion hosts that can accommodate a broad range of s-, p-, and d-block cations. However, the insertion of lone-pair-bearing cations remains largely underexplored. In this article, we examine the implications of varying the 6s2 cations situated in interlayer sites between condensed [V4O10]n double layers. Systematic modulations of lattice distortions, electronic structure, and magnetic ordering are observed with increasing strength of stereochemical activity from group 12 to group 14 cations. We compare and contrast p-block-layered MxV2O5 (M = Hg, Tl, and Pb) compounds and map the significance of local off-centering arising from the stereochemical activity of lone-pair cations to the emergence of filled antibonding lone-pair 6s2–O 2p-hybridized mid-gap states mediated by second-order Jahn–Teller distortions. Crystallographic studies of cation coordination environments and the resulting modulation of V–V interactions have been used in conjunction with variable-energy hard X-ray photoelectron spectroscopy measurements, first-principles electronic structure calculations, and crystal orbital Hamilton population analyses to decipher the origins of stereochemical activity. Magnetic susceptibility measurements reveal antiferromagnetic signatures for all the three compounds. However, the differences in V–V interactions significantly affect the energy balance of the superexchange interactions, resulting in an ordering temperature of 160 and 260 K for Hg0.5V2O5 and δ-Tl0.5V2O5, respectively, as compared to 7 K for δ-Pb0.5V2O5. In δ-Pb0.5V2O5, the strong stereochemical activity of electron lone pairs and the resulting electrostatic repulsions enforce superlattice ordering, which strongly modifies the electronic localization patterns along the [V4O10] slabs, resulting in disrupted magnetic ordering and an anomalously low ordering temperature. The results demonstrate a versatile strategy for toggling the stereochemical activity of electron lone pairs to modify the electronic structure near the Fermi level and to mediate superexchange interactions.

  • « Go to Previous Page
  • Go to page 1
  • Go to page 2
  • 3
  • Go to page 4
  • Go to Next Page »

Google Scholar link

View all publications on our Google Scholar profile.

Recent Publications

  • Tuning the Spin Transition and Carrier Type in Rare-Earth Cobaltates via Compositional Complexity
  • Revealing Complete Atomic-Scale Switching Pathways in van der Waals Ferroelectrics
  • Graphlet Decomposition Using Random-Walk Memristors
  • Origin of Stabilization of Ligand-Centered Mixed Valence Ruthenium Azopyridine Complexes: DFT Insights for Neuromorphic Applications
  • Mechanisms enabling reconfigurability and long-term retention in vanadium oxide electrochemical memory

© 2016–2026 Reconfigurable Electronic Materials Inspired by Nonlinear Neuron Dynamics Log in

Texas A&M Engineering Experiment Station Logo
  • College of Engineering
  • twitter
  • State of Texas
  • Open Records
  • Risk, Fraud & Misconduct Hotline
  • Statewide Search
  • Site Links & Policies
  • Accommodations
  • Environmental Health, Safety & Security
  • Employment