• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • About REMIND
  • Research
  • Publications
  • People
  • News
  • Opportunities
  • Contact Us

Reconfigurable Electronic Materials Inspired by Nonlinear Neuron Dynamics

Texas A&M University College of Engineering

Potential and challenges of computing with molecular materials

R. Stanley Williams, Sreebrata Goswami, Sreetosh Goswami

Potential and challenges of computing with molecular materials

March 29, 2024

We are at an inflection point in computing where traditional technologies are incapable of keeping up with the demands of exploding data collection and artificial intelligence. This challenge demands a leap to a new platform as transformative as the digital silicon revolution. Over the past 30 years molecular materials for computing have generated great excitement but continually fallen short of performance and reliability requirements. However, recent reports indicate that those historical limitations may have been resolved. Here we assess the current state of computing with molecular-based materials, especially using transition metal complexes of redox active ligands, in the context of neuromorphic computing. We describe two complementary research paths necessary to determine whether molecular materials can be the basis of a new computing technology: continued exploration of the molecular electronic properties that enable computation and, equally important, the process development for on-chip integration of molecular materials.

Google Scholar link

View all publications on our Google Scholar profile.

Recent Publications

  • Tuning the Spin Transition and Carrier Type in Rare-Earth Cobaltates via Compositional Complexity
  • Revealing Complete Atomic-Scale Switching Pathways in van der Waals Ferroelectrics
  • Graphlet Decomposition Using Random-Walk Memristors
  • Origin of Stabilization of Ligand-Centered Mixed Valence Ruthenium Azopyridine Complexes: DFT Insights for Neuromorphic Applications
  • Mechanisms enabling reconfigurability and long-term retention in vanadium oxide electrochemical memory

© 2016–2026 Reconfigurable Electronic Materials Inspired by Nonlinear Neuron Dynamics Log in

Texas A&M Engineering Experiment Station Logo
  • College of Engineering
  • twitter
  • State of Texas
  • Open Records
  • Risk, Fraud & Misconduct Hotline
  • Statewide Search
  • Site Links & Policies
  • Accommodations
  • Environmental Health, Safety & Security
  • Employment